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Development of A Theory of Information Flow and-Analysis*

M.C. Yovits, L.L. Rose, J.C. Abilock
The Ghio Stdte University
Columbus, ohio

Abstract

This paper describes research being carried out at The
Ohio State University leading toward g general theory of in-
formation flow and analysis. The objectives of the Nationa?
¥

f

Science Foundation-sponsored research program’ include th~
following: {(1) to develop a theory of information flow and
analysis; (2) to identify important parameters and variables -
in the Information process which can be quantified and mea-
sured; (3) to develop relationships among the variables which
describe their behavio: and limitations; (4) to apply this,
theory to specific practical sitvations, particodarly those
involving science Information; and {5) to develop both simu-
lation and experinental models for quantification and vali-
dation of the theory.

The generalized : ode) of information flow is shown to
represent virtuzlly any decision sitvation. Using this model
we derive a nurber of méasures. Two of the more important

ones are: I =m P{aiJz « 1 and
1=1

m #* #*
DME = | ¢ P{ai) EV ijﬁmax (Fv k)' With these measures we
1=1 '
can quanlify the amount of information {I) in a decision
state and cvaluate Jecision-maker effectiveness (I’E). We
can also determine the value of information through its

* Tortions of this paper were presented at the American
Association for the Advancement of Science Meeting 1In
Denver, Colorado, February 25, 1977,

t This material ig based upon rescarch sypported by Lie
National Science Foundation, Division of Science Inforima-
~ tion, under Gramt Numbers N 41628 and DST 76-21949,
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effec on DME. Rules are derived for use by the decision-
maker for assimilating new data in his estimates of values
and for uyse In determining selection preohebilities for var-
fous courses of action. These rules enable feedback, learn~
ing, and alternative selection to be modeled, measured, and
evaluated. Research 1s underway to validatesthe model real-
istically and to apply 1t to practical gituations.

, A further possible result of this research is the devel-
opment of & decision calculus which will establish guidelines
for decision-making given certain situarions, These guide-
lines should permit quzntification of tEe importance of
information in the decision-making process.

Background

. In geveral previous papers {1,2£3f, we have discussed
some of the properties which should exist If information
science 1s ever to become a "true" science similar to physics
or chemistry. It has been pointed out that a number of ana-
lytical expressions and concepts should exist awhich can bhe
used to describe and analyze information flow. A framework,
called a "generalized information system" was suggested which
permits the development of these concépts and expressions.

The word "information" takes on a variety of meanings
depending upén the context in which it is used. Our approach
relates Information to its effectiveness and thus its yse and
valuye, Information 1is frequently ysed rather specifically in
the sense of the Shannon and Weaver "information theory"
(more accurately called "communication theory"). 1In this
sense the context of the message 1s of no significance; the
theory-is concerned with the probability of the receipt of
any particular message for various conditions of the trans-
mission system. While this may be of Interest in information
science, it is certainly not'the major nor even a large part
of information science. Such a ‘treatment does not consider
the vital areas of concern, almost all of which are fnvolved
with’the context, meaning, and effectiveness of the message.
For these reasons, the Shannon and Weaver approach is gener-~
ally regarded as too restrictive to be & basis for the formu-
lation of an Iinformation science. At the other extreme, the
treatment nf informatiop to be synonymous with knowledge
appears to be far too broad to lead to meaningful-and useful
principles or relationships in information Sf.'iem’.‘e.‘r

In our formulation we treat information to bg data of
value in decistion-making. LaLer in the paper we define in-
formazion quantitatively and rigorousiy., While our farmula-
tion fray somewhat delimit the total range of interest in an

9




intellectual sense, it does have virtually universal applica-
bility with regard to any potential applications for iuiorma-
tion. The authors also feel that any more general definition
i3 not amenable to the quantification and conceptualization
necessary to establish weaningful-relationships, An implica-
tion of this definition then is tbat Iinformation is used only
for decision-making and that the decision maker has only the
resource of *information available to him.“ Thus, information
and decision-making are very closely bound’ together in our
general model. -

2 1
Levels of Information

Research In the general area of Information theory
started In the mid-1940's. The basic theory, as already
noted, was established with the fundamental work of Claude
Shannon and Warren Weaver (4,5).. This theory covers the
transmission of messages over a channel, Independent of mean-
ing. Thelir defined measure of information, which relates to
the entropy of the Interpretation of the sequende of bits
transmitted, bears little relation to the layman's concept of
information. This Is Acknowledged by Weaver, who defines
! three levels of iInformation, the first of which (the techni-
cal level) 1§iris concern.

The second level of information Is concerned with the
meaning of Infoymation - its semantic content. Significant
research In this area has been performed by Carnap, Bar-
Hillel, Winograd, and others (6,7). “Their research has
attempted to measure the semantic content of simple declara-
tive sentences within their language system. In this con-
‘text, they do not refer explicitly to the process of communi-
.cation between individuals. While the level ¥ information
définition Is concerned with the successful transmission of a
message from point a to point b, the level 2 definition of
Information 1is concerned with the successful Interpretation
or understanding of a message once It 1Is received,

The third level of information deals with the effective-
ness of information - i.e., how information, once received
and understood, is utilized. Hence the level 3 model is
imbedded in a decision-making environment, since that 1s the
only framework In which one can 6bserve information utiliza-
tion. Little research has thus far been accomplished in this
area, even though it 1is probably the area of greatest signif-
icance, interest, and application (8,9,70,71). Our research
1s In this area In an effort to develop a general and useful
theery of Information (1,2,3).
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Effectiveness of Information

Research by several mcn:onm has been previously per-
formed in en effort’ to define an effectiveness or nragmastic
information measure. MacKay (12) defines the value of any
data item to be the base 10 logarithm of the ratio of the
performance of the system after and before ﬂmnmnvn of ~he
data, Just how one defines "system vmnmwnsmznm is left open
by MacKay. i ' -

Cherry (13} argues that informition aids the decision~
maker by narrowing the rangc of hypotheses. Information thus
reduces decision-maker uncertainty b¥ narrowing his range of
viable alternatives. The information measure Cherry intro-
duces is the logarithm of the ratio of the aposteriori and
apriori probabilities of mmwonnnam an alternative and is
based upon Bayes-theorem.

‘Goffman (14) also considers a measure for effectiveness
of information which satisfies all of the desirable proper-
ties of the Shanndn measure. This measure quantifies the
amount of non-redundant information in a system comprised of
many compunicators. Goffman's information measure is much
like the Shannon entropy measure, but relates more to defin-

ing "connectedness"” via information flow between the elements
of the system.

Our research considers information in the domain of
decision-making and a2 conceptual decision~maker (DM). It is
important to consider information in a decision-making
environment inasmoch as it is necessary to measure the effect
of the information on the recipient (decision-maker)}. This
can be done only by monitoring the DM's actions and. the
observables resulting from the decisions made. We have
chosen to focus upon all data incoming to the DM in an effort
to quantify the informative content of that data. Our infor-
mat ion measure thus relates input data to its effect upon the
decision-making process as shown below.

It is apparent that information - 1f considered from the
effectiveness point of view - is heavily concerned with the
decision process, and therefore it 1s important to consider
information and decision making together. While the funda-
mental objectives of the current rescarch are to develop
Mrmoqmnpnmw formulation for a basic theory of information

low and analysis, we believe that this cannot be done with-
out considering in detail the use of the information; that
is, for making decisions.

+
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There 13, JY courgse, a great body of literature in thé )
decision-making f{eld. Some of the typical references are by
such researchers as Morris (21§), Raiffa (26/, Schiaiffer
(17), and Radnor (18). An excellent survey by Bandyopadhyay
(19} provides further references to research in this arvea.

s - Unfortunately, we find that the approaches described In the
literature are neither general enough nor sufficlently flexi-
ble to represént the 'situation ade€ﬁ§tely with regard to the
use of information. In partigular, there is little in the
literature pertz.ning to the non-expert decision maker,
whereas information will be of perhaps greatest value In this
sitpation. Furthermore, we belleve 1t 1s necessary to con-
sider the entire detision process which is genérally repeti-
tive over periods of time. ‘fhis process heavily Involves
feedback information using the results of previous decisions.

The General Model

A

Our general model of information flow and analysis is
1llustrated 'in Figure 1, and we briefly describe its opera-
tion, This model can be used to describe most, 1f not all,
information-dependent activities. It provides a way of look-
ing at any Iinformation-decision interaction and defining the
role and flow of Information in the system.. The IAD module
(Information/ Acquisition and Dissemination) processes data
for the system. Both exogenous {external environmental) and
endogenous {internal feedback) data are acquired by the IAD
module, Whenever a decision must be made, the DM module )
(using all of the data available) establishes the possible
courses of action and selectssthe "best" one to execute, ' The
Execution module executes the DM-chosen course of action,
according to all pertinent external environmental factors,
leading to variocus outcomes depending on the alt@®rnative
executed. These outcomes will be some observable quantities,
They must be observable in  physical sense 1f they are to
have any effect. The Tran&formation module takes all observ- 1 .
ables of the alternative executed and turns these observa-
tions Into data. These data are fed pack Iinto the TAD module
and we have come full circle, followingsthe flow of informa-
tion 1n the model,

ZQ ‘ This model of a generallzed information syst rests
' ; upon three basic hypotheses: !

Hi, Information is data of value in decision-making;
H2, Information gives rise to obscrvable effegts; L
H3. Information feedhack exists so that the Decision u -

-+ I Maker will adjust his mode) for later ‘similar
jf decisions.
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The first hypothesis requires that.information be used in a
decision-making context. If information ¢s received, but
never used or applied to a subsgquent decision, then its
effect does not exist and It cannot be measured. Hypothesis
2 assurgs that Iif the decision-maker (DM) does wake a deci-
sion, then the outcome of that decision can be observed and
measured. » This precludes decision-making in a vacuum.
Observables must exist:1f the decision-makipng and ghe courses
of action are to be evalvated. Hypothesis 3 indicgtes that
the DM learns from feedback data resulting from previous
decisions.. Note that the observed outcomes of repetitie or
related decis on~making situations provide data upon which
future decisions will be made,

Generalized Decision Making
L}
This model is dynamic in nature: even In a stationary
decision situatiof the DH's model may well change with time.
A DM learns about his particular decision situpation and

environment as follows‘ . ¢

1. He makes a decision {chooses a comrse of action) on

* the basis of all information available to him;
He predicts some probable outcomes; /
He combares actual resulting observables against his
predicted obsgrvables "¢feedback learning);

“He updates his total mpdel of the situation as a
result of this process;
He returns to step l.

For any problem environment, a DM attempts to fulf1ll
two main objectives:

1. To choose the "best” course of setion (c.0.a.)
according to some criterion given his state of
knowledge;

2. To learn the most about the total existing sltuation
from the decisicn~mak1ng process,

It 1s important to note that a DM_has these two main
objectives in choosing a course of action. "Classdcal" deéci-
sioen theory says that a BM always chooses that c.o.a. that
maximiZes some criteria. This 1s a considerable oversimpli-
fication, and the DM In fact does not automatically choose
the c.0.a. with higiest expected return. This is ,true for =zt
least three reasons., First, becduse the DM may be “unsure of
his estimates; second he may wish o learn more about the )
total situation oy executing alternatives other than the one
with highest expected return} and third, the situation may be

"changing with tinle, or if not the DM must generally assure

L
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himself that 1t 1s a static situation.

Learning frow any c.o.&. executed is 1n‘jact a very im-
portant objective of decision-making., The DM does this by
menitoring the outcomes resulting from the decision. This .
feédback updates the DM's data base upon which decisions are
based. Given the gutcome of earlier decisions, then how will
the DM update his data base? If the outcome data matches the
DM's exﬁectations, then his confidence will rise even though
there may be no other change in his estimates. However, 1f
the expected and actual results vary, then the DM wil} incor-
porate these new data Into his current estimates., He learns
from the deviation between his expected values of the out-
comes and the actual values. Learning is similar to sasmpling
from a distribution and predicting the underlying theoretical
distribution. The better the DM's learning capability, the
better his expected performance. The action of learning up-
dates the DM's state-of knowledge, with Input arriving as
either external or feedback data as illustrated in Figure 1.
Learning increases the DM's confidence in his perception of
the decision situation. Learning more about a given situa-
tion further removes uncertainty by giving the DM a better
estimate of the vari us possibilities open to him

Decision-Maker Uncertainties

The uncertainties with which a DM must cope at any given
time can be classified Into three categories: state of
nature uncertainty, executional uncertainty, and goal uncer-~
tainty. The states of na*ure encompass the uncontrollable
external conditions that will determine the various outcomes.
Depending upon the decision to.be made,’ they might inélude
for example weather, economy, .competitive environment, gov~
ernmental regulation.. The morc knowledgeable the DM 1s 3f
the probable current enyironmental cofiditiens (l.e., the
prevalling state of natu e more effectively he can make

decisions. \

Executional uncertainty appears in two ways. First the
DM must identify the c.o.a.’'s availrble to him ~ his options.
‘Second, he must determine likely outcomes for ,each c.o.a.
under considevation. If any of five outcomes, for examplc,
is possible for a given c.o.a., then what Is the probabiliLy
that a particular onc will occur? The DM must determine
these prohabilities of ocqurrence of various outcomnes for
each c.o.a. This represents his best approximation to the .
actual situation. For any complex system, the relationship
between outcomes and courses of action is probabilistic and
not deterministiec even If the state of nature wgfe koown width' -
certainty, Indther words, executional uncertaloty Is an
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inherent part of the decision-making process,

Lastly, goal uncertainty relates outcomes to goal-
achievement., The DM must examine each outcome considered and.
evaluate it in light of his goals: i.,e., he must (if he i§
to be successful) recognize the value or lack thereof of dsch
possible outcome to the attainment of his particular goals,

.- L

Each of the ungertainties discugsed has both a structur-

al and relational cOntext. The DM has structural uncertaiaty

about the number of relevant states of nature, the number of
viable alternatives, and the mumber of outcomes that may
occur as a result of executing the alternatives. Any strue-
tural deficiency will degrade the DM’s performance; €.g.,
not considering a certain ¢.0.a. or not knowing that a given
outcome may result will exascerbate the difference between
the DMz expected and“actual performance.

1

Once the strucjure is identified by the DM, he must then
resolve-Pelational uncertainties., What is the probability a
given state of nature prevails? at {s the probability that
a particular c.o0.a. will result a specific outcom~? What
is the value of each oytcome relative to goal attainment?

Some Examales

Tet us now illustrate typical decision situations and
specifically identiiy the uncertainties facing the DM.

Consider first the casz of a family physician, the
decision-maker. His decisions relate to proper diagnosis and
treatment of the ailments of his patients. An ill patient
visits his physician with a set of symptoms. The physici.n's
first step is to identify as best he can the illness giving
rise to these symptoms. The illness is the prevailing state
of nature. Inasmuch as many di:eases may have overlapping
symptoms and give rise to the set of those symptoms experi-
enced by the patient, identification of the specific i1lness
clearly is probabilistic.

The dext step is to identify a treatment - the course of
action. EAch treatment will have a number of effects, mos.
of which Are knowm to the physician only probabilisticall» ~
even if he knew with certainty the precise t{llness (state of
nature). . For example, a particular medicine may have unex-
pected side effects. Instgad of curing the patient new
symptoms may appear or old ones may be exascerbated. .. This {s
executional uncertainty,
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The sywptoms are given a value structure by the doctor
{and by the patient also). Some symptoms are obviosusly of
little interest, and some are vital to patient health. Note
that the symptoms are the Only observables, When the symp-
toms are measured, -they become data and perhaps .information.
Blood pressure, for example, is’ a physical manifestation,
whereas it beccmes data when measured. Further examination
of the patient provides information to the physician concern-
ing the actual effects of the treatment in comparison with
the expected effects, and if these differ & new course of
action may now be chosen and executed thus repeating the
entire process. This illustrates the feedback involved.
Note that this iterative process i¢ the only way a physician
as a DM can learn more about the entire situation.and in
particular the effectiveness of various treatments.

A second example of some current interest which 11lus-
trates our medel and corresponding uncertainties involved is
that of the economy ~f the United States. The observables
are the rate of inflation, unemployment, growth of the GNP,
money supply, etc. The states of nature are inflationm,
recession, growth rate, energy availability, etc. These are
élearly all probabilistic in nature and of course, never
known with certainty at any time. 1In order to achieve some
goal, which may be a specific growth rate or a reduced
unemployment or a stable economy, certain courses of action
are taken by the Government, the DM. More money may be made
available to consumers by lowering taxes, a Government-
tinanced job program may be undertaken, interest rates may be
changed, etc. The relationships of these courses of action
to the observables is probabilistic, and economists can speak
only in terms of probabilities of certain actionz having
certain observable outcomes. This is, of course, the execu-
tional uncertainty which erists even if the state of nature
were known with certainty. The goal structure is, of course, .
important and changeable. For example, does the President
want to control inflation or cut unemployment? Which is more
important (has the higher value structure)? - |

The outcomes are measured periodically and the results
{now data) are reported to the President who examines the
observable outcomes in comparison with the predicted out-
comes. This is feeuback. On the basis of his knowledge of
the situation (his predicted model) and the data obtained,
he readjusts hie expectations and may choose a new course of
action. and thus he reiterates the process. Again, note that
this iterative process is the only way to learn about the
entire situation and the effectiveness of various courses of
a~tion.

13
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Model Representation »

This decision-making process cam be analytically model-
ed In a number of d¥fferent ways. One procedure that appears
to represent this situation well and which can be .formally
manipulated uses decision matrices as shown in Figure 2.
These matrices are both of dimension.m by n to correspond to
the m alternatives and n outcomes under consideration by the
DM. An additional dimension should be added to each matrix
‘e.2,, m by n by r) to express the r possible states of
nature. Extending prhe model to consider other states of
nature Is straightforward and appears to add little to the
discussion herein, so for simplicity we consider only one
state of nature In the remainder of this paper. We define
the matrices ¥ and ¥V to be the deecision state of the DM. The
decision state relates to a particular decision, 1is unique to
each DM, and w11l change with time.

The ¥ matrix describes the DM's executional uncertainty.
Element ”ij represents the DM's estimate of the probability
that execution of the -tk alternative will result in the

- *

J-th outcome. We denote by ¥ the matrix describing the

actual probabilities for the executional uncertainty of the
* *

decision situation. Each element w i of matrix ¥ repre-

sents the gotual probahility of occurrence of outcedme J if
alternative ¢ were to be executed. This is an aposteriori
probability in the standard sense and represents the fraction
of times outcome J would occur 1f alternative 7 were executed
many times. We repeat that these matrices .as Indicated are
for a single state of nature. There would in reality be a
third dimension of dimensionality r for the different states
of nature,

The decision-n2zker develops his estim?tes of the wij's

on the basis of experience and whatever data or information
he has available. These are his best estimates of the

#
w ij's' The more "expert” the DM 1s the closer his ¥..'s

*
should be to the v ij's. .

*
If wij =W ¥ ¥ 7,4, then the DM has correctly assessed
*
the consequence of his possible actions. If m < m , then the

#*
DM 1s unaware of certain courses of action; 1f n < n , then
one or more oputcomes may occur of which the DM is unaware.
*

If m >m , then the decisisn-maker believes that certain

14




K, Probability Matrix for
outcomes for various
courses of action

Outcomes
(7] v O
2 n

11 Yo 000 Yy,

w w

1

u

LI ) w

22 on

Courses
of
Action

V, value Matrix for
outcomes for various
alternatives

Outcomes
02 con On

022 e Uln

v

22 L] Uzn

Courses
of
Action

Figure 2: ¥ and V: The Oecision State for
" One State of Mature




courses of action are viable when ln fact they are not. Sim-
4

for some %,j sug-

ilarly for n > n , We see that wij F w

1j
a a

gests a relational uncertainty; n % n oorm + m 1indicates

gtructural uncertainty.

There is a value for every possible alternative-outcome
pair. Therefore a value matrix ¥, also of size m by 7, can
be superimposed over.the decision matrix ¥, Each element
vij of matrix ¥V represents the DM's estimate of the value of

outcome J as a result of executing alternative £. Note that
the value 1s a function not only of the outcome but also of
the course of action chosen. The following examples
illustrate why this must be so.
N p

Consider the situation where & document from a collec-
tion 1Is chosen on some basis to be relevant or non-relevant
(the c.o.a.). "If it 1is chosen to be relevant and it turns
out to be relevant (the outcome), then the set of {c.o.a.,
ovtcome} has a particular value to the DM. If, on the other
hand, the document were chosen to be non-relevant and it
turns out to be relevant, then the value to the DM of this
set Is quite different from the previous situvation and is 1in
fact negative.

Consider the simple betting game of flipping a coin
(heads or tails). The value natrix (if we win or lose a
silver deollar) Is as follows:

~ Heads Talls {ontcomes

Heads . $1 -$1
Tails | -§: +$1

Alternative { value Matrix

Clearly the outcome values depend upon the alternative
selected.

Consider also a three alternative model where the op-
tions are to buy, sell, or hold a given stock. The outcomes
are that the stock price goes up, down, or remains the same.
Presume that the first outcrme occurs: 1.e., the stock price
increases. Considering our three alternatives, we observe
the following: had the hM purchased sume of this stock he
wauld have realized a profit: had he sold some of this stock
he would have realized a loss: had he done nothing he would
have realized neither profic nor loss. lHence we see three
values for the same outcome; cach is alternative-dependent,




~ . 4 4

Currently for simplicity we assume V' = V , where V
denotes the actual value matrix: 1.e., the DM correctly
knows the value of each outcome identified. Removing this

. assumption adds another dimension to DM learning. Full
generality, &3 we have Indicated, considers IV to be of size
m by n by r for the r possible states of nature. It follows
then that ‘the value of an gutcome depends also upon the
existing state of nature, which may change with time.

We have chosen to use an expected value model for
evaluation of the matrices. By this we mean that the
expected value of any ¢.o.a. 1s cowputed as the weighted
average of the outcome-value pairs. Given the ¥ and V
matrices which describe the decision state of the DM, one can

" compute the DM’s expected value of each alternativ. as
follows:

m
[ = » L]
EV; JEJ ?ig v?"7 1)

Other procedures for determining values of c.o0.a.'s can be
. used, but the expected value model 1Is reasonsble and tracta-
ble and thus convenient to use,

The m EV's computed represent the DM's qaaegsment of the
expected values of the m alternatives. The getual expected
4

value of each alternative we denote Py EV e This value is

#* 4 B
‘obtained by using elements u ij of matrix ¥ for the DM's

+ 4 ar
wij vaives in equation {1) above. The EV : then represents

the average outcome value which would be expected 1f alter-
native { were executed many times. The DM does not know the

4

value of EV f; else he would simply choose the alternative
X

with the highest IV and thus-maximize his returns. The

4
closer the DM's EV vector Is to vector EV , the more correct
his assessment of the situation and the better decision maker
he should be,

Qur curvent model considers only positive EV values:
v, EVi 2 0. - We would also like to treat negative expected

values for the following reason: the DM must be penalized
for choosing 2 bad alternative. Hence his outcome value for
this alternative must be negative. as Indicated In the .
relevant/non-relevant document example deseribed earlier. If
enough executions of alternative kX will result in a loss to

the DM, then the resultant EVk will be negative. Negative




terms in our formulations cause certain mathematical problems
which must be treated. We plan. Iin the near future, to
expand our model o that negative EV's can be considered and
handled by the model.

Making a Decision

The DM makes a decision by selecting a course of action
to execute. Just how should he make this decision? Clearly
it will be based upon a1l the datz he has stired rggarding
hid current assessment of the decision state: the ¥ and ¥
matrices. We have just ghown how an expected value vector,
EV, can be derived from the decision state. If the DM is to
make 8 rational decision, then it must be based upon these
data. Although.we do not impose a specific decision strategy
upon the DM, we will make one reasonable assumption. This is
that the DM will prefer alternative 7 to alternative j if .
EVi > Egj.

The DM must establish a probability for choosing each
c.o.a. In classic expected value decision theory, ‘the DM
will always choose the c.o0.a. with the greatest expected
value. But selecting the alternative of highest EV is
generally the best strategy only if the DM has\virtually full
confidence in his deriveds EV values. The DM may have consid-
erable structurzl or relational.uncertainty regarding the
situation. Also, he may wish to learn more about the total
decision situation. The only way he can do this is to sample"
c.0.a.’s Iin additfon to the one with maximum EY., Then he can
¢ompare predicted and observed outcomes to learn and. re-
evaluate his EV estimares. Furthermore, the situation may be
changing with time and the PM «imply may not wish to rely
completely upon his previvusly computed EV values.

Thus we desive a method by which a probability can be
assoclated with cach alternative. vepresenting the PM’s
probability of selecting that alternative. This distribution
should have the properties that:

. > , =2 Loz H
EV; EKJ P(az) z P(aj)

-

no DM confidence in his knowledge of

EV's => Ve P{ai) = %-f that is, with no

information about the Valucs to be expected,
the DM will select & c.o0.a, at random;




d) total bM confidenze in his knowledge of
EV's => P(ai) = 1 for maximum EV, and zery

for all othets. *
+ \ !

We propose the éelection rule

c m
Pta.) = (EV.)" / L (EV
z A k=1 k

for situations involving positive EV values.

)C 3 ¢ 13 a non-negative real (2)

' The variable C 1in equation (2) above is called the
confidence factor: the higher the value of C, the higher the
DM's confidence Iin his knowledge of the EV's., If € = 0 then
P(ai) = 1/m ¥ and we have the random case. The DY has no-

confidence In his current state of knowledge so he prefers to
make a random choice rather than let his EV's determine which
¢.0.a. to execute, At the other extreme, £ => o regults ip
the classic decision theory rule: the alternative with
highest EV is executed every time.

The following lemma formally demonstrates that this

selection rule dves indeed satisfy the four essential
criteria noted above.

Lemma 1: The selection rule P{ai) = (EVi)C /e ¢

m

E (gv,)
_ k=1 - K
for C, Evk > 0 satisfies the four requisite properties for

establishing the DM selection distribution.

Proof:

Let P(ai) be defined as in equation (2),

Com nt o m G
Then\ ‘E P(ai) ‘= L EEV{.) / L (EVk) :l.
(i

i=] k=1
m ) c m c
Hence I Pla.)' = L (FVi) /L {EP@) = 1.
=1 *  i=1 k=1




=> N g,
b) EV?: > E‘VJ. Prazj > P(aJ)
Let E‘Vi > E‘VJ. .

Then (E‘V.JCZ (E‘V.)c yC= 0.
t J p
c, ™ c c, ™ c‘
Hence (EV,)” / T (EV,)" > (EV.) / T (EV,);
1z k=1 k J =7 k

t.e., P(ai) = P(aj).

No DM confidence in his knowledge of
EV's => ¥, Pla,) = 1 .
1 1 m

Let C = 0. <

-

m
o
Then we have Vi P(ai) : (EVz') / E} (EVk)

L m N
Hence ”1: Pla,) =1/ £ 1=2%,
¢ - k=1

Total PM confidence in his knowledge of
EV's =>3 1 P(ai) = 7 and all other P(ak) = 0.

o

- 7 . > —y L .
Assume 3 £ 2 ¥, FV; &y, for 2 + k

Then consider the term P(ai-) ag  + o,

Zim im c " 7

C +w Pla,) -C—!-w[(E‘V.)/Z (EV):'
1 i k=] k

Iim m c c
C+w {1/ ] L (E'Vk) / (EV‘:Z)
k=1

Zim m c 7
C+w (i/ I EE‘Vk) / (EV':Z) ]} .
k=1

linm
£+ o

. ¢ C _ iim c
But ¥k 4 ¢ BV v )" = T ey, 7 B7)C =,

since EVi > EVk .




czf:"mf (2v, )% (5v,)°

_Iuw C - 1,*
C-bd'r EV c-btb *

Therefore C;fnw P{ai) = ] and£$§ a) above,

Lastly, for k =

74

T
wti SO Pla) =0

QED

Décfsion—ﬂgker Learning

In our approach, we use equatigns (1) and (2) in order
to calculate Expected Values and Probabilities of alterna-
tives available to the DM. .'The following sequence of events
then occurs. This procedure 1s a general one for all .
expected value models and is not dependent upon specific
formulations of the probabilities. 1In actual practice, the
DM may determine probabilities mainly by judgment rather
than from calculation.

I. DM estimates or predicts EV{ for £ =1, 2, ..., mon the

basis of all of his past experiences using equation (1);
2. DM establishes Pla ) for i =1, 2, ..., m from his ‘
estimates of the EVg and his current level of confidence

in the data. 1In our approach he uses equation {2) to
derive these estimates; -

DM now executes an alternative, %k, In accordance with his
estimates of the probabilities developed in step 2;

Given the prevalling state of nature, some outcome occurs
as a result of executing alternative X. Remember that
the DM is only pr- babilistically knowledgeable about
which outcome wil' accur.

The resultant out.ome 1s now fed back to the DM In
accordance with Fi ure 1, permitting the DM to upgrade
his assessment of the situation.

On the basis of this feedback information the DM updates
his estimate of EVk and his assessment of the probabili-

ties of the outcomes for that alternative., Note that the
DM's assessment of the decision situation und all tha

21 .
g,
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values thereof are a function of his previous experience
and the data obtained from the decisions he has made.

Go back to step 2, update the P's using the new EV* and -
continue.
. \
Step 6 in the above characterization of DM activity, j
using feedback data to update the DM's state of knowledge
(or decision state), is what we call "relational learning".
This learning can be considered 'to be effected by making row
changes to the ¥ matrix. Or, in4 mor¢ macroscopic sense,jwe
simply alter the current LV assessment corresponding to th%
alternative executed. In either case (macro or micro)} the !
end result is an updated DY estimate of EV,., No other EV's{
are altered since only one c.0.a. has been executed; :the
feedback data clearly relates only to the alternative
executed. Of course from equation (2) we note that all his
probabilities are altered due to a change in one EV and/or a
change in his confidence.

Learning can be modeled by adjusting the DM's expected
value of the alternative just executed. The value of the
observed outcome Is averaged into the DM's EV approximation
in some way. A number of learning rules could be used to
update the EV's. We have, for convenience, chosen the
following learning rule inasmuch as 1% does seem to be
descriptive of the actual process. In this gituation c.o.a.

k has been executed at time ¢ resulting in the actual value ..
Vk{t) occurring. The DM then updates his old estimate of the

expected value for c,0,a, Xk by °~ . P‘

EV, (t+1) = [1-)

k k

(t)] EV,(t) + J\k{t) Vk{t), o§ A 1, Y=(3)

That 1s, the expected value of alternative X at time t+1 is
simply a weighted average of the eﬁpected value at time ¢t and
the actual outcome value obtained at time ¢, Vk(t).

F3
The learning parameter } should be a decreasing function
of time and confidence. For Iinstance, a possible definition
of kk(t) might be: :

[

kk{t) = I/E{Ck+3} % number of trials for c.o.a. i]- (4)

Variable Ck is the DM's confldence faector in his estimation
of EVk and goes from 0 to infinity.




Note that when the DM has little confidence in his
estimates, or when he has little data on which to base .an
estimate, his learning will be large (almost one) and when
his confidence is-high the learning ‘will be small (almost
zZero).

Two lmportant aspects of this learning algorithm should
be noted. Tirst, it shopld be clear that learning fauses a
chaip-reaccion: altering a row of the ¥ matrix altegs the
respective EV which in turn alters thé DM's probabilities for
selecting an alternative {by our selection rule).

.Secqgd, the DM's confidence plays an important role in »
both learning and selection. Although the parameter,.confi-
dence, Is used In both equation (2¥ for selection procedure
and equation (4) for learning, the two may differ Iinasmuch as
they describe different phenomena, Furthermore, Iin equation
(2) thedvariable C is an overall confidence In the entife
situation, whereas In equation (4) the variable Ck applies to

the confidence that a.DM ﬁas In his. knowledge of the outcome
of a particular c.o.a. Further research on this matter, both
conceptual and experimental, Is underway.’ 1

+

The Basic Information Meagure

Given our model of 1nformatio‘ flow and analysis. we can *
now develop definitions of Important terms whi¢fi can then be
quantified and measured and which are of course consistent
with the basic theory. We first define our fundamental
measure of Informatfon from the standpoinmt of effectivenzss.
All levels of information have one important point in common:
information reduces some uncertainty. Uncertainty in the
effectiveness sense should relate to the DM's choice of a .

.c.0.a2. How certain is’the DM about which alternative should
be chosen? |
)

The uncertainty in choosing a course of
reiates directly to the DM's probabilities of execyting each
course of actiom For example, If all of the probabilities
are the same, then the DM is totally uncertain which alterna-
tive should be selected. At the ather extreme, 1f the DM is
completely certain as.to his course of action then for some
i, P{ai) =1 and all the other probabilities are zero,

Thus we choose the variance of the P's as a basis for our
measure of Information. HNote that the variance 1& zero when
all of the P's are the same and a maximum when one P i3 unity
and the others are zero.




&

The meaﬁ 4quare variance of :he probabilities, o {P) 1s
by definition.

1

o 2 e 2 |
) o“(P) = T [Pla) - u(P)]"/m, ()
T ]
andithe mean, U(P), is: L,
\ 3
wer = | 8 Plajf/m=t, )
=1 -

A
»

wherq\m is the number of viable courses of action.

“Any bisic measure of infOrmétioﬁ’shoul possess & number
of fundamental prdperties., First, it should ke defined in
terms of some fundamental unit of meagure. It\should be at a
maximum yhen the variance of the elements is maximal, and 1t
should be at a minimum when the variance 1s wminimal. These
bounds should be well” defined. The measure should be
indifferent to the order of consideration of the elements.
fg must be stable; 1, e.: the co::iQ:ration of an additional
Bo

c.q.a. of low probability should n have a significant

. effect upon the measure. Finally, the measire should be .

sequentially additive. - Whether applied once to the entire
set of, elements or respectively to a set of mutuaii?

;«clusive and exhaustive subsets,“he measure should yield
the same result. A measure’bf information which possesses

the aforementioned propert}eﬁ would provide a sound basis fof’/#

outr theory of effective information

He have indiciyéffthat any effectiveness measuyre of

‘informatipn must rdlate to the variante of the DM'§ probabil-

ities of selection of the altetnativés. However, it is not
the variance directly byt the normalized variance which is
important. The simplest way to consider the variance of a
population In a normalized form is to divide it by the
square of the mean, that is to consider the r.m.s. deviation
in terms of units of the mean, It is clear that we must
gonsider a normalized variance since a given variance about

‘the nean will be much less significant’ when the mean is large ’

than when the mean is small.
tq Hence we define our fundamental meagure of information
be A\

s , I = 02{P)/u2{P). (7)

%
Since ug{P) = Iﬁmg-(see equation (6)), we observe that this
measure relates the variance to m, the number of courseu of

action. ' ¢

.
*
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Referring to equations (5),.(6), and (7), we see that

\‘\‘. . m
r3minle) = | ¢ @(cm - 3—)‘% /(1)2
t . z m m
=1
/
n 2
i=]

This quantity possedses the desired properties for an infor-
mation measure as we now demonstrate. Thus, we define this
quantity to be the amount of information in the dectsion
state, viz : i
m
IT'=m g

“ P(aiiz -1,
1

Tan

Properties of Information Measure

The information meacure as defined possesses most of the
desired properties of a fundamental measuye of Information
effectiveness. .

i

This quantity has a minimum of zero when'all the P(ai)'s
are equal to %-(pure chance). This {s Ebmplete uncertainty,

The quantity has a maximum of m - 1 in the case of complete
certainty where one of the P(ai)'s Is one and the others are
zero.

Whea there are only two possible courses of action, the
quantity I will assume values from zero to one. It will be
equal to one under condition of certainty, {.e., when the
probability of choosing one course of action 1s one and the
other probability is zero. ,Accordingly, we will define the
unit of information in terms of a deterministic two-choice
situation. Thie unit we call a binary chotce unit, or b.c.u.

When there are m possible courses of action, then the
maximum amount of information from cquation (8) 1is seen to be
m-1b.c.u."s, This is in agrecment yith a)well-Known
combinatoric Principle that a minimum of m< 1 deterministic
choites from pairs of alternatives 1s required when there
are r alternatives ‘o consider. More explicitly, if m + 2
choices gre required and the maximum amount of Information in
each choice is one, then the maximum amount of information is
m - J. Analogously the minimum aPount of information is
zZero., N




Clearly the measure 1is indifferent to the order in which
the elements are considered. Since addition is associa-
tive, the P's can be summed in any order yielding a2 unique
reault.. Hence the alternatives can be considered 'in any
order. .

The consideration of additional courses of action of low
probability have an insignificant effect upon the measure.

This is seen from equation (8) inasmuch as the .sum of the P2
will be essentiaslly unchanged with the addition of such 2
c.o0.a. However, the m will change by one and thus the rels-

tive information change is proporiional to %-. Thug the

addition of a new c.o0.a. does not significantly slter I for
reasonable size m.

An sdditional question to be considared is the additi-
vity of our measure. The measure itself clearly does not
possess simple linear additivity since it is based on a non-
linear distribution, erg.. the variance., This must be the
case inasmuch as the probability of choosing any course of
action must depend on all the other courses of action. How
ever, the measure does have an important additivity property
.involving expected values,

The probability of choosing any course of action is a
function of the decision-maker's expectation of all the
valigs as we have seen in egquation (2). The values (or the
expedtation of the values) on the other hand are independent
of each other. We show below that the values of subsets of
the courses of action are indeced additive and can be consid-
ered separately, Thus in going from the values to the
probabilities to information we show an important additivity
property. Hence the decicjion-maker's estimate of performance
(defined in equation (12) below) for disjoint subsets A, B of
the courses of action has the following additivity property:

The DM's estimate of performance with sets (A, B) equals
his estimate of performance for set (A) multiplied by the
probability of selecting set (A) plus his estimate of
performance for set (B) moltiplied by the probability of
selecting set (B). Thus in order to add information in dis-
joint sets we must first consider the fundamental values.

The proof of this statement follows:




Consider get S of alternatives ays az, ooy a and 1ts

associated EV, and PS(a£J for i =1, 2, ..., m. Then by
definition from equation (12) below

"
DQS = .E‘ Ps(ciJ Eva .

Now consider g partitioning of S into disjoint sybsets A and

B whose unfon 1s §. As order of evaluation for DPS ia

unimportant, rensme the alternatives so that
ars Ay vooy ak'e A and Ay g0 Apgr coor Gy € B. Now
k
consider computing DPA: note that I PsfaiJ $ 1, since
1=]

K <m If only these alternatives are to be considered then
they must be factored uniforinly sc that they gsum to 1. Hence

k
w2 get Ph(aiJ = P‘S(aiJ/jEI PS{ajJ, which uniformly {p~areases
k
the probabilities for alternatives in 4 3 ) 3A(a£J =1,
1=1

»

=1 1=1 J=

k k k
Thus Dph = ‘E PA(Q£J EPi = I PS(aiJ EV{ / E] Ps(aj{}.

A similar term s derived for set B; {.e.,

mn m

m
DPp= I Pola) &.= I IP(a.)Ev,/5 pal.
P B0 T ,:S O ek S

If a DM now wishes to combine these two evaluations to con-
sider all m alternatives collectively, then it is only
natural to consider the sets A and B as two alternative gets
with associated probabilities of selection P(4) and P/B) and

cstimated values DPh and DPB. Thus,

I)PAUB = P{A) x DP}q + P{B) x I;PB. But

k m

P(A) = T p (aiJ ano P(g}) = I Pé(aiJ. So substituting
=1 ° 1=kt ]

P(As, P(B), Or, ana DPp into our equality, we have




k k k ,
= I PS(a£) .Z PS(0£) EV; /.Z PS(aj) +

AB o i=1 =1

m m m *-‘
I P.la )T P.a,) EV,/ T Pila.)
kel S |isker S F  gepwr SV

m
L

-~

‘ PS(a£) Evk = DPS .
1=1

QED

Amount of Information in a Data Set

-t

A measure of the amount of information in a data get or
message can be arrived at oy computing the difference in the
amount of .information in the decision state after and before
receipt of the data. That is, the amount of information is
determined by considering the impact these new data have om
the decisio: ~maker's decision state. In symbolic terms,
I(D), the amount of information in data set D, is

I(p) = T - Igs (9)

where It+} and It are the amounts of infor nation in the

decision state after and before receipt of the data set.

It should be noted that the amount of information in a
"data set may be either positive or negative. In general,
po.itive 1nfoqmation sharpens or refines :he decision-maker's
understanding of the situation in that it either reduces the
number of structural components in the model or reduces the
dispersion in one or more of the various probability distri-
butions in the model. Negative information, on the other
hand, either increases the number of structural components
(e.g., the addition to the model o? a previously unknown
alternative or outcome} or incrcases .he dispersion in the
various distributions. HNegative information, despite a
possible gonnotation of the term, does represent informaticn
that is of significance to the decision-maker.

Y This measure will in general vary with time; it will in
general [differ with different DM's and with different
situatidns. This variation 1s cousistent with the fact that
data cannot be evaluated out of rontext. Tor instance, a
given dodument which is relewvint to a scientist working on a
problem ik nuclear physics is probably non~relevant to an




ecorsmist. Knowing next month's projected output Is of wvalue
to 8 DM worried about finding buyers or projecting future
output, but after that munth has passed the DM will usze the
actual output data, not the old projections. Lastly, each
DM is different and thua mway react differently to the same
data; hence a different IfD). This is a messure peraonal to
the DM that 1Is time and situation dependent.

Related Measures

We have now defined a quantitative geasure of the
amount of Information In terms of the fundsmental unit,
b.e.u. From an’effectiveness standpoint, we are further
concerned with the value of the Informetion. In order to
establish a2 measure of the value of Information, we firat
must define a term which describes the capability cf &
decision maker to dchieve his goals. Such a term we will
call decisicn-maker effectiveness or DME, We can then define
the value of information in terms of the corresponding change
in the DMF. This will then be & measure of the effectiveness
with which the DM uses the information available to him.

We will define DME in terms of the average expected

performance of the DM at any given time. The DM executes the .

c.0.a.'s In accordance with his probability distributio:

A
The average outcome of alternative % is EVi , the actual

expected value, Thus, asverage DM performance, AP, can be
expressed as!

m *
AP = T Pla) EV, . (10)
i=1 *

If the DM makes & series of decisions with the¥e probabili-
ties, then his performance, on the average, will be that
projected by AP, Actual DM performance at time t is &
specific value Vk{t) which is obtained from the alternative
. Note that V, (¢t} will In fact be one of v, .'s
k k ki
acssoclated with alternative X as seen from observation of
Figure 2. The walues obtained by execution’'of c.o.s., ak’

executed,

will vary according to the probabilities defined by the
: "
starred matrix and will vary about the mean EVk with a

variance determined by the values ind their probabilities.
Observation of each row of the value matrix indicates the
extreme values.




Because of the fluctustions possible in actual DM
perforhance, we define the decision-maker effectiveness 1n
terms of the average DM performance as compared to the maxi-
mun possible DM performance. The maximum possible DM
performance occurs when max EVk*is chosen with certainty.
Thus

DME = AP/max(.e:vk*J,

m
e = I Pla.) (EV.*J/max(EVk*J. (11)
i=1 " v

DME 13 a dimensionless unit which goes from zero to one and
tells us how well the DM 15 able to meet his goals. Note
that AP 1s clearly additive in the same way as we showed
above for DP, the DM's estimate of his performance.

A rational DM should In.rease his DME with time on the

*
average, as mar (EVk ) 1s constant and average performance

£
(EP(ai) EV“: J should increase as feedback data enhances the

DM's probabilities of choice, PfaiJ. We see that if
*

P(ak) = 1 for the maximum valued EVR , then DME = 1, the

maximum.

*
0f course,; the DM does not know the EV 's with
certainty. He can only approximate them probabilistically.
Therefore, the DM can only estimate his DME and, in fact,
his best approximation to his performance is given by the
term we define to be the PM expected performance, DP. That
is

DP =1L P(aiJ EV; 3 (12)

*
where EVi 1s the DM's estimats of Evg . As the DM becomes

more expert, his PP approaches AP,
Y
*
The DM does not knos the max EV and therefore he can
only estimate his ME from equation (12). This would take
the form of DP divided by his estimate of the maximum (EVi).

Every decision maker has a perception of his own effective-
ness for a given situation. We are interested empirically
in relating the DM's estimate of his effectiveness to that
calculated from our equations above for DMF and DP. We are
planning both simulations and experiments to determine the
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similarity of these two terms.

Value of Information

Decision-maker effectiveness, as defined In equation
{11), provides the basis for our measure of the value of
information, QfD}. As our measures are concerned with the
effectiveness level of information, it 1is natural to define
the value of information to be related to its effect updn the
performance of the DM, Did the new data increase or decrease
the DM's performance, and by how much?

t

Because of the variations possible in actual DM per~ ¢
formance at a given time, we believe it i3S only meaningful to
consider the performance on an average basis. This, of

2
course, 1s accompanied with a mean square deviation, O about .

the average. Hence DMEt+1 - DMEt would show the change in

pM effectiveness {see equation 1i) due to information
-eceived, Thus we define Q(D), the value of the information
in data set D, as: p o

L
.

C ,
Q(D} = JﬂFt+f - DMEt ' {13}

The measure DME 1s well defined and ranges from € to I; hence
our value measure QfPL ranges from -1 to +1. Data that

- results In decreased DM performance are of negative informa-
tion value; 1f they do not effect performance, then they are
of no value, and (D) = 0.

The value measure (D} is described in teyms of & basic
unit: DPME, It has prescribed upper and lower bounds that
are consistant with the intended meaning of &(p}. The

~ measure Is assoclative and additive 1f the AP 1s considered
. - directly. Thus, this measure, @(D), possesses gll of the
e properties we require of a fundaqental information measure.

lience we have déveloped two fundamental metrics which

_ measure tnformation amownt, [(N}, and information value,
- @(D}). wvhile the quantity I(D} shows the change in the DM's

| L plans for dealing vith the situation, the quantity Q(D)

- defines the value accrued from the DM's change in probabili-
ties., These two measures are thus distinct, yet they are
interdependent. However, the relationship between them is
quite complex. Information amount deals with the BM's
actions; Information value relates to DM performance.
Further research will determine under what assumptions
general relationships can be guarantccd.
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Summary of Yefinitions

In this paper ve have developed a number of important
definitions characterizing information and decision-making. -
This section reviews those definitions so that they can be
considered together in a meaningful manner. -We list each
term, describe its meaning, and repeat its definition ar
given previocusly.

a) Expected Value of a c.o0.a., a,: the expected yalue of an

alternative i1s the weighted average of .the outcome
values, .

m

BV, = L w,,v..,. (1)
4 j=1 17 1

Selection Rule for c¢.o0.a.'s: the probability of
selecting alternative i is proporticnal to its
relative expected value raised to the DM's
confidence,

n
Pla,) = (EV /T v, (2)

i k

=]

Learning Rule for expected value of c¢.o.a. (ath the

new expected value of alternative k, given the
outcome value of a prior execution, i1s a weighterd
combination of the old expected value and the
observed outcome value,

k

Information in the Decision State: the amount of

informatign in the decision state of the DM in
b.c.u.’s is

EVk{t+IJ = [I-lk{tlj svk{tl + xk(tl v, .

m 2
I=m T Pla)®-1. (8)
i=1

Informatlion Amount: the amount bf information in a data
set ) is defined as the change in the informatien
of the DM's decision state after and before
receipt of the data.

I(p) = It+1 - It . (9)




DM Actua]l Performance: actual DM performance at time ¢-
is the actual value of outcome J, which is obtained
from the alternative executed, ak:

DM actual performance (t) = Vk{ t) = vw .

DM Average Performance: the average performiance of 8 DM
is the weighted average of the actual expected
outcome values,

ta

n 4
AP = I P{ati EV{ . (10)
; =]
Decfgion-maker Effectiveness: the effectiveness of a DM
is the,ratio of his ave.age performance to the
'maximu$ expected outcome vzlue.

m
DME = T Pla.) (Ev.')/max(Ev,’) . an
i=1 T T )4

DM_Expected Performance: the !s estimate of his
average performance is the weighted average of his
expected outcome values. .

m
i=2

Information Value: the value of the Iinformation iIn a
data set D to a given DM is defined to be his
change In effectiveness.

(13)

Q(D} = DME,, . - DME, .

Conclusions and Further Research

The fundamental goal of this research 1s to develop &
comprehensive, usable theory of information at the effective-
ness level. Thus far we have defined 2 detailed model for
Information flow and analysis. We have suggested that most
decision-making situations can be modeled within this formu-
lation. We have developed an underlying mathematical frame-
work to deﬁé;e the decision state of the decision maker:
matrices ¥ H«ﬁ; From thias framework we have algorithmi~
cally definéd procedures to model, we belfeve realistically,
DM data assimildtion, DM selection, and DM execution of
alternatives. The entire model implies iteration many times
80 that the DM cdn better estimate the decision state and
various assoclated parameters. With this framework we
believe that we can accurately describe the use of
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information in an effectiveness sense and the rcle of
information in the total decision procesa.

We have defined herein a number of important information-

prelated measures. Two of these of particular importance are

the amount of information I(D} and value of information @(D/,
which quantify the Information In a data set D.” Other
measures that can be derived from our model include the
amount of information In the decision state (I}, decision-
maker effectiveness (DME), decision-maker expected perfor-
mance (DP) and DM average performance (AP). These measures
provide us with a quantitative bssis for analyzing and
defining information flow and for ildentifying limitations of
this flow.

. .
Continuing research involves establishing relationships
among these duwatities and the significance of eagh to the

.information flow process. We are seeking generalized infor-

mation relationships In an effort to establish fundamental
guidelines for information flow, analysis, storage, and
processing. In addition, we feel that generalized rules for
waking decisions under various conditions -~ a decision
calculus_~ will emerge from this model as well.

We are planning to apply this theoretical development to
practical situations and indicate how the quantities can be
defined, measured, and used in a practical way. In particu-
lar, we are developing examples using a bibliographical
retrieval system, a production control Jituation, and a
general economic model.

- .

of courJ;: of primary concern 18 the question of
validation in an empirical sense of our theory and measures,
We have developed a simulation model to verify some of our
basic measures and procedures and to determine their value,
Two versions of the simulation modsl have been implemented
in FORTRAN: a batch model and an interactive model. The
batch model 1s running on an IBM 370/168 and 1s being used
for running long repetitive decision situations with many
trials. Aggregate data from test cases are being studied to
determine 1f the results are consistent with the theory and
to firid further relationships between the basic quantities
defined in our information flow model., The Interactive model
is running on 4 PDP~10 and enables direct input to be made
by a human decision maker. We plan to conduct actual experi-
ments using g document collection and real decision makers
in order to S%tablish the various paramaters and their
validity. .
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